1 e.g. $\frac{3}{x+7} \times \frac{2}{x+6} + \frac{4}{x+7} \times \frac{3}{x+6} + \frac{x}{x+7} \times \frac{x-1}{x+6} (=\frac{3}{8})$		4	M2	for all correct products and intention to add
e.g. $\frac{3}{N} \times \frac{2}{N-1} + \frac{4}{N} \times \frac{3}{N-1} + \frac{N-7}{N} \times \frac{N-8}{N-1} (=\frac{3}{8})$ oe			(M1	for one correct product)
$5x^2 - 47x + 18 = 0$ oe $(x = 9)$			M1	Correct quadratic equation
$5N^2 - 117N + 592 = 0$	16		A1	dep on M3
				Total 4 marks

2 (a)		$\frac{3}{10}, \frac{7}{12}, \frac{5}{12}, \frac{7}{12}, \frac{5}{12}$	2	B2	B1 for $\frac{3}{10}$ oe B1 for all other correct probabilities 2d.p truncated or rounded (e.g 0.58 or 0.41 or 0.42)
(b)	$\frac{7}{10}$ X " $\frac{5}{12}$ " or " $\frac{3}{10}$ " X " $\frac{7}{12}$ " oe		3	M1ft	
	$\frac{7}{10}$ X " $\frac{5}{12}$ " + " $\frac{3}{10}$ " X " $\frac{7}{12}$ " oe			M1ft	
		56 120 oe		A1	eg $\frac{7}{15}$ or 0.46(2 dp truncated or rounded)
(c)	" $\frac{3}{10}$ " χ " $\frac{5}{12}$ " $\chi x = \frac{3}{100}$ oe		3	M1ft	A correct equation involving the unknown probability
	$x = \frac{3}{100} \div \frac{15}{120} = \frac{6}{25}$ oe			M1ft	Isolating or calculating the value of x
		25		A1	Dep on M1
					Total 8 marks

3	$ eg \frac{\left(\frac{N+3}{2}\right)}{N} \left(=\frac{N+3}{2N}\right) $	b and $N=2b$ $3(\operatorname{cor} b=N+3)$	eg where r = number of red pens $\frac{r+3}{2r+3}$ or $\frac{r+3}{N}$ and $N = 2r+3$ (or $r = \frac{N-3}{2}$)		5 M	for making a correct start by finding the probability of the first pen being black for their method. If in 2 variables, one must also be defined in terms of the other. (any letter may be used for the variable)
	$\frac{\text{eg}}{\frac{N+3}{2N}} \times \frac{N-3}{2(N-1)} = \frac{9}{35}$	eg $\frac{b}{2b-3} \times \frac{b-3}{2b-4} = \frac{9}{35}$ or $\frac{b}{N} \times \frac{b-3}{N-1} = \frac{9}{35}$	$eg \frac{r+3}{2r+3} \times \frac{r}{2r+2} = \frac{9}{35} \text{ or}$ $\frac{r+3}{N} \times \frac{r}{N-1} = \frac{9}{35} \text{ and } N = 2r+3$		M	1 oe dep on previous M1 for a correct equation for black, red — must be in one variable or if 2 variables, one must be defined in terms of other.
	eg $35(N+3)(N-3)$ = $9(2N(2N-2))$ or $35(N^2-9) = 9(4N^2-4N)$		eg $35(r^2 + 3r) =$ $9(4r^2 + 10r + 6)$		M	dep on previous marks for a correct equation in one variable with no algebraic fractions – brackets may or may not be expanded
	eg N ² - 36N + 315 (= 0)	eg $b^2 - 21b + 108 (= 0)$	eg $r^2 - 15r + 54 (= 0)$		M	1 For correctly rearranging their equation to a 3 term quadratic
	Working must be seen	1		21, 15	A	1 cao dep on M4
						Total 5 marks

4	$\frac{6}{n} \times \frac{5}{n-1}$ or $\frac{n-6}{n} \times \frac{n-7}{n-1}$ oe		6	M1	for red, red or blue, blue
	$n \xrightarrow{n-1} 0 \xrightarrow{n} 1 \xrightarrow{n-1} 0 $				This may be seen as part of an equation
	or $\frac{6}{4} \times \frac{n-6}{n-1}$				allow eg $n-6-1$ in place of $n-7$
	$\frac{\mathbf{or}}{n} \times \frac{n}{n-1}$				The second secon
					or for red, blue
	$\frac{6}{n} \times \frac{5}{n-1}$ and $\frac{n-6}{n} \times \frac{n-7}{n-1}$ oe			M1	for both products, with no other products
					This may be seen as part of an equation
	or $2 \times \frac{6}{n} \times \frac{n-6}{n-1}$ oe				or for red, blue + blue, red
•	$\frac{6}{n} \times \frac{5}{n-1} + \frac{n-6}{n} \times \frac{n-7}{n-1} = \frac{9}{17}$ oe			M1	Correct equation
					•
	or $2 \times \frac{6}{n} \times \frac{n-6}{n-1} = 1 - \frac{9}{17}$ oe $2n^2 - 53n + 306 (= 0)$ oe				or correct equation using the complementary
	n n-1 17		1		event.
	$2n^2 - 53n + 306 (= 0)$ oe			A1	Correct simplification of equation
					to a 3 term quadratic.
					$eg 8n^2 - 212n + 1224 (= 0)$
	(2n-17)(n-18) (=0)			M1	For solving correct 3 term quadratic equation
	or $\frac{53 \pm \sqrt{(-53)^2 - 4 \times 2 \times 306}}{2 \times 2}$				using any correct method.
	or ${2\times 2}$				If factorising, allow brackets which expanded
	(52)2 (52)2				give 2 out of 3 terms correct (if using formula
	or $\left(n - \frac{53}{4}\right)^2 - \left(\frac{53}{4}\right)^2 + 153 = 0$ oe				or completing the square allow one sign error
	(4)(4)				and some simplification – allow as far as eg
					$53 \pm \sqrt{2809 - 2448}$
					4
					or eg $\left(n - \frac{53}{4}\right)^2 = \frac{361}{16}$ oe
					or for both correct solutions of the correct
					quadratic. $n = 18, n = 8.5$
		18		A1	cao dep M3
					do not award if non-integer solution also given.
					Total 6 marks

5	$\frac{5}{x} \times \frac{(x-4)}{x} \text{ oe or } \frac{(x-5)}{x} \times \frac{6}{x} \text{ oe}$ $\frac{5}{x} \times \frac{(x-4)}{x} + \frac{(x-5)}{x} \times \frac{6}{x} \text{ oe}$		5	M1 M1	for a correct expression for $P(R,G)$ or $P(G,R)$ for a correct expression for $P(R,G) + P(G,R)$
	$19x^2 - 352x + 1600 (= 0) \text{ oe}$ or $19x^2 - 352x = -1600 \text{ oe}$			M1	for a correct equation in the form $ax^2 + bx + c$ (= 0) oe or $ax^2 + bx = -c$ oe
	$(x - 8)(19x - 200) = 0$ or $(x =) \frac{352 \pm \sqrt{(-352)^2 - (4 \times 19 \times 1600)}}{2 \times 19}$ or $19 \left[\left(x - \frac{176}{19} \right)^2 - \left(\frac{176}{19} \right)^2 \right] + 1600 = 0$			M1	for solving their 3-term quadratic equation using any correct method - if factorising, allow brackets which expanded give 2 out of 3 terms correct (if using formula or completing the square allow one sign error and some simplification – allow as far as $\frac{352 \pm \sqrt{123904 - 121600}}{38} \text{ oe or } 19 \left(x - \frac{176}{19}\right)^2 - \frac{576}{19} (= 0) \text{ oe })$
		8		A1	cao, dep on M2. Do not award if non-integer solution also given. 8 must come from correct working.
-					Total 5 marks

6	(a)		$\frac{5}{12}$	2	B1 for first choice correct 0.41(666) to 2 dp truncated or rounded
			$\frac{7}{12}, \frac{5}{12}$		B1 for second choice correct 0.58(333) to 2 dp truncated or rounded 0.41(666) to 2 dp truncated or rounded
	(b)	$"\frac{5}{12}" \times \frac{5}{12}$ oe		2	M1 ft from their tree diagram 0.58(333) to 2 dp truncated or rounded
			$\frac{25}{144}$		A1 oe 0.17(361111) to 2 dp truncated or rounded or 17.(361111)% to 2 sf truncated or rounded
	(c)	$\frac{7}{12} \times \frac{5}{12} \times \frac{x}{15} \text{ oe or } \frac{7}{12} \times \frac{5}{12} \times y \text{ or}$ $2 \times \frac{7}{12} \times \frac{5}{12} \text{ oe}$		3	M1 for GRB or RGB or $2 \times GR$ or $2 \times RG$
		$2 \times \frac{7}{12} \times \frac{5}{12} \times \frac{x}{15} = \frac{7}{24} \text{ oe or}$ $2 \times \frac{7}{12} \times \frac{5}{12} \times y = \frac{7}{24} \text{ oe or}$			M1 (ft their tree diagram) for a complete method 0.29(166) to 2 dp truncated or rounded
		$\frac{\frac{7}{24}}{2 \times \frac{7}{12} \times \frac{5}{12}} \left(=\frac{3}{5}\right) \text{oe}$			
			9		Al
					Total 7 marks

7	eg $\frac{x+7}{80} = \frac{1}{4}$ or $4(x+7) = 80$ or $x+7 = 20$		4	M1	for setting up a correct equation in terms of x only
	eg $x = 80 \times \frac{1}{4} - 7$ (=13) or $4x + 28 = 80$ and $x = \frac{80 - 28}{4}$ (=13) or $x = 13$			M1	for a complete method to find the value of x or $x = 13$. Award of this mark implies M2.
	eg 80 – ("13"+7+"13"–11+3×"13")(=19) or $\frac{"13"+7+"13"-11+3×"13"}{80} \left(=\frac{61}{80}\right)$			M1	for a method to find the number of yellow counters or P(R or B or G)
	Correct answer scores full marks (unless from obvious incorrect working)	19 80		A1	oe eg accept 0.2375 or 23.75% or 0.237 or 23.7% or 0.238 or 23.8% or 0.24 or 24%
					Total 4 marks

8 (a)	eg x + 0.15 + 0.5 + y + 0.13 x + y = 1 - 0.15 - 0.5 - 0 x + y + 0.81 = 1 oe or x + y = 1 - 0.81 oe or 1 - 0.15 - 0.5 - 0.13 - 0 1 - 0.81 = 0.19 oe		2	M1	for setting up an equation in x and y using the sum of probabilities equals 1 or for showing that probabilities add up to 1	
	Working required	Shown		A1	correctly rearranges to $x + y = 0.19$ (must be shown from a correct method) or a clear statement that $x + y = 0.19$	
(b)	x + y = 0.19 3x - y = 0.09 Adding (x + 3x = 0.19 + 0.09 or 4x = 0.28) or 3x - (0.19 - x) = 0.09 or x + 3x - 0.09 = 0.19	$3x + 3y = 0.57$ $3x - y = 0.09$ Subtracting $(3y y = 0.57 - 0.09 \text{ or}$ $4y = 0.48)$ or $3(0.19 - y) - y = 0.09$ or $\left(\frac{0.09 + y}{3}\right) + y = 0.19$		3	M1	for a correct method to eliminate <i>x</i> or <i>y</i> : coefficients of <i>x</i> or <i>y</i> the same and correct operator to eliminate selected variable (condone any one arithmetic error in multiplication) or writing <i>x</i> or <i>y</i> in terms of the other variable and correctly substituting (condone missing brackets)
	"0.07" + y = 0.19 or $3 \times$ "0.07" - y = 0.09 or y = 0.19 - "0.07" or y = 3 × "0.07" - 0.09	$3x + 3 \times "0.12" = 0.57$ or $3x - "0.12" = 0.09$ or $x = 0.19 - "0.12"$ or $x = \left(\frac{0.09 + "0.12"}{3}\right)$			M1	dep on first M1 for a correct method to find other variable by substitution of found variable into one equation or for repeating the above method to find the second variable.
	Working required		x = 0.07 and $y = 0.12$		A1	oe dep on M1
						Total 5 marks